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Abstract
A quantal description (da Providência Jr and Barberán 1992 Phys. Rev. B 45 6935–7; Barberán
and da Providência Jr 1996 Z. Phys. B 101 3–12) of the collective modes in metals is revisited.
Collective variables are explicitly introduced. A time-dependent Slater determinant is assumed
for the wavefunction of the system of valence electrons. Analogous models are also investigated
using the semiclassical approximation based on the Wigner transform. The results indicate that
for those collective modes, which are associated with a large number of particles, namely the
cloud of valence electrons, the semiclassical approximation provides good results and is a
reliable tool.

1. Introduction

The study of plasmons (collective excitations of the gas of
valence electrons in metals) has been a challenging subject [3].
We will be concerned with the energy of plasmons in metals
and we will use the quantal and the semiclassical versions of
two models [1, 2] describing collective modes of the cloud
of valence electrons in metals. In this field there are many
experimental results [5–10] which we will try to interpret with
our theoretical models.

The semiclassical approximation based on the lowest
order of the Wigner–Kirkwood h̄ expansion has been widely
used with good results [11]. The idea being that some
processes involving a large number of electrons may be
explained by classical mechanics provided that it is combined
with the Pauli principle. In some cases, the normal modes
obtained using the semiclassical approximation compare well
with available quantal calculations [4] for the same force
parameters. Due to the large number of degrees of freedom,
and in order to simplify the calculations, it is often convenient
to perform a variational calculation within a restricted space.
In [1, 2], two variational calculations of collective modes of
the valence electrons in a metal were presented which lead,
in one case, to a single branch dispersion relation, and in the
other case to a double branch dispersion relation. As a trial
wavefunction, a time-dependent Slater determinant of plane
waves |φ〉 was considered which is related to the Hartree–Fock

ground state through a unitary transformation

|φ〉 = ei Ŝ
h̄ |φ0〉, (1)

where the generator

Ŝ =
N∑

j=1

S(x j , p̂ j , t) =
N∑

j=1

(
Q(x j , p̂ j , t) + P(x j , p̂ j , t)

)
,

(2)
is a Hermitian time-dependent operator, Q is time-even, P is
time-odd, x j stands for the position of the electron j and p̂ j

is the momentum operator of the electron j (p̂ = −ih̄∇).
Following [2] we write Q = Q A + QB and P = PA + PB ,
where

Q A(x, p̂, t) = 2α cos(q · x), (3)

QB(x, p̂, t) = 2β p̂ · q cos(q · x)p̂ · q, (4)

PA(x, p̂, t) = 2γ [p̂ · q sin(q · x) + sin(q · x)p̂ · q], (5)

and

PB(x, p̂, t) = 2δ[(p̂ · q)2 sin(q · x)p̂ · q

+ p̂ · q sin (q · x)(p̂ · q)2], (6)

with α, β , γ and δ being time-dependent collective variables
which describe collective modes of the gas of valence
electrons. The dynamics of the system is determined by the
quantum mechanical action principle. In the present paper we
consider the semiclassical approximation, which means that in
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a Wigner–Kirkwood expansion, in powers of h̄, only the lowest
order powers are considered. In the classical limit (see the
next section for the rules used to obtain the classical limit),
the expressions of the Wigner transform of the generators are

(Q A(x, p̂, t))CL = 2α cos(q · x), (7)

(QB(x, p̂, t))CL = 2β (p · q)2 cos(q · x), (8)

(PA(x, p̂, t))CL = 4γ p · q sin(q · x), (9)

and
(PB(x, p̂, t))CL = 4δ(p · q)3 sin(q · x), (10)

where p = (p̂)CL represents the linear momentum. While
in [1], Q = Q A and P = PA are considered, so that
the trial wavefunction is parametrized by only two collective
coordinates α and β , in [2] the truncation scheme Q =
Q A + QB and P = PA + PB is used, so that the trial
wavefunction depends on the collective coordinates α, β ,
γ and δ. The results we obtain within the semiclassical
approximation are compared with experimental data. We
find that the semiclassical description reproduces rather well
the experimental behavior (eventually doing better than the
corresponding quantal models presented in [1, 2]).

2. Method

For small amplitude deviations from the equilibrium state, the
quantum mechanical Lagrangian

L = ih̄〈φ|φ̇〉 − 〈φ|H |φ〉, (11)

leads to the harmonic Lagrangian,

L(2) = i

2h̄
〈φ0|[Ŝ,

˙̂S]|φ0〉 − 1

2h̄2 〈φ0|[Ŝ, [H, Ŝ]]|φ0〉, (12)

which determines the time evolution of the generator Ŝ. The
dot over φ and S denotes a time derivative. Here H stands for
the many-body Hamiltonian,

H =
N∑

j=1

p̂2
j

2m
+

∑

i, j

e2

4πε0|xi − x j | +
N∑

j=1

U(x j) + W, (13)

where U(x) is the potential energy due to the uniform positive
density distribution and W is the electrostatic energy of the
positive background.

The classical limit is given by the following rules:

(1) An operator A(r, p̂) is replaced by its classical limit
ACL (r, p) which is the leading term of the Wigner–
Kirkwood expansion of the Wigner transform of A(r, p̂)

in powers of h̄.
(2) The commutator of two operators [A, B] is replaced by

ih̄{ACL , BCL }, where the notation {,} stands for Poisson
brackets

{A, B} =
3∑

i=1

(
∂ A

∂xi

∂ B

∂pi
− ∂ A

∂pi

∂ B

∂xi

)
,

where xi and pi are respectively the Cartesian coordinates
in coordinate and in momentum space.

(3) The expectation value of a one-body operator, 〈A〉 =
tr ρ A, is replaced by the integral in phase space

∫
d� f ACL

where f is the classical limit of the Wigner transform of
the one-body density matrix ρ and d� = 2 d3xd3 p

(2π h̄)3 .

Starting from the Lagrangian (12) and considering the
generator S = Q A+QB + PA+ PB the following semiclassical
Lagrangian is obtained:

L(2) = 2N

π2n0

(
h̄4q13(δβ̇ − βδ̇)

7x7

+ h̄2q9(δα̇ − αδ̇ + γ β̇ − βγ̇ )

5x5
+ q5(γ α̇ − αγ̇ )

3x3

)

− T (2)[α, β] − E (2)[γ, δ], (14)

T (2)[α, β] = N

mπ2n0

(
h̄4β2q13

7x7
+ 2h̄2αβq9

5x5
+ α2q5

3x3

)
, (15)

E (2)[γ, δ] = 4Nh̄2

mπ2n0

(
h̄4δ2q17

9x9
+ 2h̄2γ δq13

7x7
+ γ 2q9

5x5

)

+ 4Nq2n0

ε0

(
3h̄2δq4

5x2
+ γ

)2

, (16)

where T (2)[α, β] = 1
2h̄2 〈φ0|[Q̂, [H, Q̂]]|φ0〉CL , E (2)[γ, δ] =

1
2h̄2 〈φ0|[P̂, [H, P̂]]|φ0〉CL and x = q/kF. From the

Lagrangian L(2) a system of four Lagrange equations
is obtained. The eigenmode solutions arise assuming
the following analytical time-dependency for the collective
variables: α(t) = αr cos(ωr t), β(t) = βr cos(ωr t),
γ (t) = γr sin(ωr t) and δ(t) = δr sin(ωr t). Substituting
these expressions into the equations of motion, we find
a homogeneous system of equations for the amplitudes
αr , γr , βr , δr which may be expressed as a matrix equation in
terms of the vector zr :

(−ωr M + H )zr = 0 (17)

where M and H are real and symmetric matrices and zT
r =

(αr , γr , βr , δr ) represents the transpose of the column vector
zr . We require that the determinant of the homogeneous system
of equations is zero, |−ωr M + H | = 0, in order to have
nontrivial solutions. This equation leads to four solutions
which are associated with the eigenfrequencies ωr (appearing
in symmetric pairs, ω− j = −ω j ) and the eigenvectors zr with
r = −2,−1, 1, 2. The eigenvectors fulfil an orthogonality
relation and may be normalized according to the following
orthonormalization relation:

zT
r Mzs = δrs

ωr

|ωr | . (18)

From the equations of motion it also follows that γ̇ =
− α

2m and δ̇ = − β

2m . Using the orthonormalization relation,
equation (18), we expand, in terms of eigenmodes, the
excitation operators Q A = 2 cos(q · x) (associated with
the vector zT = (1, 0, 0, 0)) and PA = 4p · q sin(q · x)

(associated with the vector (z ′)T = (0, 1, 0, 0)). We then have
(1, 0, 0, 0) = ∑n

j=−n c j zT
j and (0, 1, 0, 0) = ∑n

j=−n d j zT
j . It

may be seen that

n∑

j=−n

h̄ω j c
2
j = 1

2h̄2 〈φ0|[Q̂ A, [H, Q̂ A]]|φ0〉CL , (19)
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n∑

j=−n

h̄ω j d2
j = 1

2h̄2
〈φ0|[P̂A, [H, P̂A]]|φ0〉CL . (20)

with equations (19) and (20) corresponding, respectively, to
the linear energy weighted sum rule for the operators Q̂ A and
P̂A. The coefficients c j and d j are interpreted as transition
amplitudes corresponding to the operators Q̂ A and P̂A. Taking
into account that d j = −c j mω j , and since [H, Q̂ A] = ih̄

2m P̂A,
the cubic energy weighted sum rule is obtained:

n∑

j=−n

h̄ω3
j c2

j = 1

2m2h̄2 〈φ0|[P̂A, [H, P̂A]]|φ0〉CL

= − 2

h̄4
〈φ0|[[H, Q̂ A], [H, [H, Q̂ A]]]|φ0〉CL . (21)

In equations (19)–(21), n = 1 if the generator S = Q A + PA is
considered and n = 2 if the generator S = Q A+QB +PA+PB

is considered. The modes with eigenfrequencies ωk and ω−k

have the same energy h̄|ωk | and exhaust equal fractions of the
sum rules.

The Lagrangian given by equation (14) can be directly
compared with the Lagrangian given by equation (11) of [2].
One can see that some of the terms appearing in the Lagrangian
of [2] do not appear in the semiclassical Lagrangian presented
in this note, such as the exchange terms and some terms with
their origin in the kinetic energy. In order to be more specific
we now consider the simpler scheme of [1] where the trial
wavefunction has the generator Ŝ = Q̂ A + P̂A. In this case
the semiclassical harmonic Lagrangian reduces to

L(2) = 2N

3π2x3n0

(
−6h̄2γ 2q9

5mx2
− α2q5

2m
+ γ α̇q5 − αγ̇ q5

)

− 4q2 Nn0γ
2

ε0
. (22)

In this simpler scheme only the frequencies ω1 and ω−1 result
from the Lagrange equations,

ω1 = −ω−1 =
√

3h̄2k2
Fq2

5m2
+ n0

ε0m
, (23)

and therefore two of the terms appearing in the expression for
the frequency in the equation (21) from [1] are now missing,
namely a term due to the exchange contribution and a term
which has its origin in the kinetic energy and is proportional to
q4.

3. Numerical results and discussion

We will now present the results obtained from the
Lagrangians (22) and (14) and we will compare them with
the corresponding quantal results and with the experimental
data. In the case of the parametrization S = Q A + PA

leading to the semiclassical Lagrangian (22) (or to the quantal
Lagrangian given by equation (14) in [1]) we will refer to
as parametrization I and in the case of the parametrization
S = Q A + QB + PA + PB leading to the Lagrangian (14) (or to
the quantal Lagrangian expressed by equation (11) in [2]) we
will refer to as parametrization II. Following [1, 2], and in order

to compare with experiment, we will use an effective mass m∗
(instead of the bare electron mass m) and a dielectric constant
ε (instead of the vacuum dielectric constant ε0). The choices
for m∗, ε and n0 will depend on the metal considered. In our
formalism the linear (LEWSR) and the cubic (CEWSR) energy
weighted sum rules are fulfilled. Evaluating the fraction of the
sum rules that correspond to each mode, we obtain information
concerning the probability of excitation of each mode which
will help us to interpret the experimental data.

Due to the analytical expression of the Lagrangian, we
are led to frequencies which depend on m∗, ε and the
equilibrium density n0 of the valence electrons. The density
may be expressed in terms of the parameter rs such that
n0 = (4π(rsa0)

3/3)−1 where a0 is the Bohr radius. With
parametrization II, two eigenenergies are found for each
value of q (we find one eigenenergy with parametrization I).
Concerning parametrization II, in the limit when q → 0, one
of the eigenenergies is zero and the other one corresponds to

the volume bulk plasmon frequency ωp =
√

n0
ε0m . Due to our

parametrizations of the wavefunction by means of collective
coordinates, all the modes derived within these models are
collective modes.

For parametrization I, only one branch for the energy
is obtained, which implies that for each value of q the
corresponding energy exhausts the LEWSR and the CEWSR,
thus this case is different from parametrization II. For this
reason, for each metal we present two graphs, one with the
experimental and theoretical energies corresponding to the
parametrizations I and II and a second graph with the fractions
of the LEWSR within parametrization II (in the two graphs
we always include the quantal and the semiclassical results).
In the graphs for the energy and for the fractions of the sum
rules, each branch is always associated with a set of symmetric
eigenfrequencies (ωk and ω−k ).

With respect to aluminum we have considered the values
m∗ = 1.05 m and ε = 1.05 ε0 which were obtained from
the calculated shifts of the plasmon energies at q = 0 due
to inhomogeneity and core polarization effects [12]. The
experimental data is taken from [5]. In figure 1 we present
results for aluminum. On the higher graph we present the
energies of the eigenmodes as a function of q2 and on the lower
graph we present the fractions of the LEWSR corresponding
to the eigenenergies obtained within parametrization II. In the
upper graph, the dotted curve is the result obtained within
parametrization I in the semiclassical approximation while
the dash–dotted curve is the corresponding quantal result
obtained within parametrization I [1]. The two dashed curves
appearing in both graphs refer to the eigenmodes obtained
doing the quantal calculation in parametrization II [2], and
the two continuous curves are the results obtained in the
semiclassical approximation with parametrization II. We see
that the semiclassical result within parametrization I has a
reasonable behavior between the experimental points and also
that the thin continuous curve corresponding to the higher
mode in parametrization II (semiclassical approximation)
shows a behavior close to the experimental points. With respect
to the quantal results the dash–dotted curve (parametrization I)
agrees well with the experimental data for lower values of
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Figure 1. Numerical results for aluminum (rs = 2.07, m∗ = 1.05 m
and ε = 1.05 ε0). The curves of the above graphs represent the
quantal and the semiclassical results obtained within the models
of [1, 2]. In the upper graph, the excitation energies of the collective
modes are plotted as a function of the wavevector q and the
experimental data is taken from [5]. The dotted curve (semiclassical
result) and the dash–dotted curve (quantal result) correspond to the
eigenenergy obtained in the simpler model [1] where the generator S
is approximated by a polynomial of degree 1 in the momentum
operator (parametrization I). This model leads to just one
eigenenergy for each value of q. Two eigenenergies are obtained
assuming a polynomial of degree 3 in the momentum operator for the
generator S (parametrization II) [2] and are represented in both
graphs by the continuous curves (semiclassical result) and by the
dashed curves (quantal result). In order to make judgements about
the excitation probability of these collective modes we plot, on the
lower graph, the fractions of the LEWSR corresponding to the
eigenenergies obtained, assuming for the generator S a polynomial of
degree 3.

q , but the agreement becomes worse for higher values of q .
Within parametrization II we see that for lower values of q the
quantal result corresponding to the higher mode (thin dashed
curve) is closer to the experimental results, while for higher
values of q the quantal lower mode (thick dashed curve) gets
closer to the experimental results. These behaviors are directly
related with the fractions of the LEWSR presented in figure 1
on the lower graph: while in the semiclassical case the mode
with the higher energy (thin continuous curve) exhausts always
more than 50% of the LEWSR and has an energy closer to the
experimental results, in the case of the quantal calculation the
situation changes and we see that for values of q2 larger than
2.2 Å

−2
, the lower mode (thick dashed curve) exhausts more

than 50% of the LEWSR and gets closer to the experimental
results.

Figure 2. Numerical results for beryllium (rs = 1.88, m∗ = m and
ε = ε0).

The experimental data considered for beryllium is taken
from [6]. For beryllium (see figure 2) we have used m∗ = m
and ε = ε0. Within parametrization II, when we look at the
experimental results, it is clear that the semiclassical results
(continuous curves) follow the experimental data better than
the quantal results [2] (dashed curves). The same can be said
with respect to parametrization I, since the semiclassical result,
represented by the dotted curve, is closer to the experimental
data than the quantal result given by the dash–dotted curve.
With respect to the quantal result (dashed curves), for q larger
than 1.68 Å

−1
the branch with lower energy exhausts more

than 50% of the LEWSR and it is also clear from figure 2
that in this region the lower branch agrees better with the
experimental results than the higher branch, which deviates
strongly in direction with higher values of the energy.

The experimental data in figure 3 refers to sodium and is
obtained from electron-energy-loss spectroscopy in [7]. We
use an effective mass m∗ = 1.05 m, also taken from [7],
and the value ε = 1.05 ε0 was adjusted so that the volume
plasmon agrees for q = 0 with the experimental result. The
dotted curve (semiclassical approximation-parametrization I)
and the thin continuous curve have a good agreement with the
experimental data. The dash–dotted curve (parametrization I-
quantal calculation) also shows a good agreement with the
experimental results. We note that on the lower graph the
thin continuous curve exhausts most of the LEWSR (92%
for q = 1 Å

−1
). With respect to the quantal result

concerning parametrization II, for low values of q there is a
good agreement between the higher mode (thin dashed curve)
and the experimental results and for higher values of q the
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Figure 3. Numerical results for sodium (rs = 3.93, m∗ = 1.05 m and
ε = 1.05 ε0).

experimental results actually lie between the two branches
(dashed curves). In fact for q = 1 Å

−1
the experimental data

lie closer to the lower branch than to the higher branch and
this is in agreement with the fact that here the fraction of the
LEWSR exhausted by the mode with lower energy is greater
than 50% for q larger than 0.686 Å

−1
.

We finally consider the case of lithium (rs = 3.22)
presented in figure 4 for which (as for beryllium and
aluminum) the experimental data indicates more than one
energy branch. The experimental data is taken from [8]
(diamonds), [9] (squares, triangles and circles), and [10] (×).
We have used m∗ = m and ε = 1.25 ε0. We see that many of
the experimental values shown in the upper graph of figure 4
do not even lie between the two dashed curves referring to
the quantal calculation associated with parametrization II. In
this case we have agreement of the experimental data with the
higher energy eigenmode for small values of q up to 0.5 Å

−1
.

When we consider parametrization I we observe that the dotted
curve (semiclassical calculation) has a better agreement with
the experimental data than the dash–dotted curve (quantal
calculation, parametrization I). The two semiclassical branches
obtained with parametrization II (continuous curves) show a
reasonable agreement with the experimental data presented
and we observe that the exhausted fractions of the LEWSR
behave accordingly, since for q equal to 2.28 Å

−1
the lower

energy branch already exhausts more than 30% of the LEWSR
which we associate with the fact that more than one branch is
observed experimentally. With respect to the quantal results

Figure 4. Numerical results for lithium (rs = 3.22, m∗ = m and
ε = 1.25 ε0).

the branch with lower energy exhausts more than 50% of the
LEWSR for q > 1 Å

−1
.

As a remark, we observe that the present semiclassical
model (parametrization II) corresponds to more general
generators than the ones chosen in [2]. In fact there is an
infinity of operators Q B and P B for which the semiclassical
limit is given by equations (8) and (10), namely:

QB(x, p, t) = 2β
[
μ1p̂ · q cos(q · x)p̂ · q

+ μ2

2

(
(p̂ · q)2 cos(q · x) + cos(q · x)(p̂ · q)2

) ]
, (24)

and

P B(x, p, t) = 2δ
[
ν1

(
(p̂ · q)2 sin(q · x)p̂ · q

+ p̂ · q sin(q · x)(p̂ · q)2
)

+ ν2
(
(p̂ · q)3 sin(q · x) + sin(q · x)(p̂ · q)3

)]
, (25)

where μ1 + μ2 = ν1 + ν2 = 1.

4. Conclusion

We have presented numerical results for the plasmon excitation
energies in different metals which we have compared with
the experimental data and we have investigated the excitation
probabilities by means of the linear and cubic energy weighted
sum rules.

As expected, the semiclassical expressions do not involve
the analogues to some contributions which appear in the
quantal expressions (for example the exchange terms). It is
therefore remarkable that the performance of the semiclassical

5
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approach is comparable, and in some cases superior, to the
corresponding quantal approach, as for instance with respect
to interpretation of experimental results related to processes
involving large momentum transfer.

In the present note we give the expression of a Lagrangian
from which one can easily derive the eigenfrequencies as well
as the fractions of the linear and the cubic energy weighted sum
rules corresponding to each eigenmode. We therefore believe
that this might be a helpful tool in carrying out spectroscopic
studies.
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